Antegrade Hypogastric Revascularization During Endovascular Aortoiliac Aneurysm Repair: An Alternative to Bilateral Embolization

Renato A. Mertens, Michel P. Bergoeing, Leopoldo A. Mariné, Francisco Valdés, and Albrecht H. Krämer, Santiago, Chile

Anatomy has been the major challenge to overcome to increase safe and durable applicability of endografting for the treatment of abdominal aortic aneurysm. Bilateral iliac aneurysm preventing an appropriate distal landing zone for the endograft is a common condition and can be managed by (a) increasing the diameter of the endograft, with limitations in available sizes, (b) bilateral hypogastric embolization, accepting an increased morbidity, (c) the use of a branched device, increasing the cost and currently with limited availability, (d) combined surgical hypogastric revascularization by the retroperitoneal approach, or (e) retrograde revascularization from the ipsilateral external iliac artery using an endograft. We describe the use of widely available devices to obtain stable antegrade revascularization of one hypogastric artery during aortic endografting. We report the case of a 68-year-old man, at high risk for an open procedure, who presented with bilateral iliac aneurysm and minor aortic ectasia; no iliac landing zone was available. A regular bifurcated graft was deployed and extended into one of the external iliac arteries, preceded by ipsilateral hypogastric embolization. Through an upper extremity approach, an endograft was deployed from the remaining bifurcated graft branch into the other hypogastric artery, followed by ipsilateral external iliac occlusion. Finally a femorofemoral crossover bypass was performed. The patient recovered event free, and patency of the endograft and absence of endoleak were demonstrated on computed tomography. Minor unilateral buttock claudication resolved in 6 weeks and sexual function was preserved. This technique is a reasonable alternative to consider in the endovascular treatment of patients with bilateral iliac aneurysm, allowing preservation of pelvic perfusion, limiting cost, and using available devices.

INTRODUCTION

Endografting has become a major treatment option of abdominal aortic and iliac aneurysm. Anatomy is probably the major challenge to overcome to ensure safe and durable applicability of this technology. Iliac aneurysmal degeneration is commonly associated with aortic aneurysms. Commercially available devices can obtain a proper distal seal in dilated common iliac arteries up to 22 mm. When bilateral common iliac aneurysms are present, multiple options to deal with this situation have been described, including bilateral hypogastric occlusion associated with extension of the endograft into the external iliac arteries, accepting variable morbidity related to pelvic ischemia. Other alternatives, including unilateral hypogastric revascularization, have been described, but they all have limitations related to the technique itself, cost, or availability.

We describe an alternative of pelvic revascularization during aortic endografting using commercially available devices.

CASE REPORT

A 68-year-old obese male patient presented with bilateral iliac aneurysms, 3.8 and 4.7 cm in diameter on the
right and left side, respectively, with extension into the right hypogastric artery. His previous history was significant for hypertension, former heavy smoker, and a myocardial infarction. There was no available landing zone for a regular bifurcated endograft at the common iliac arteries (Fig. 1).

Under epidural anesthesia, vascular access was obtained through bilateral common femoral artery surgical exposures. The left femoral artery was used to introduce and completely deploy a regular bifurcated Zenith endograft (Cook Medical, Bloomington, IN). Proximal left brachial access was obtained through a small surgical exposure and a 10 Fr×80-cm-long sheath was introduced and localized at the left branch of the bifurcated graft. The left hypogastric artery was selectively catheterized and an Amplatz 1-cm soft-tip guidewire (Boston Scientific, Natick, MA) was used as support to advance a 13.5×120 mm Fluency endograft (Bard Peripheral Vascular, Covington, GA) (Fig. 2A). The endograft was deployed into the hypogastric artery with a 3-cm overlap at the artery and the Zenith endograft, obtaining a complete seal (Fig. 2B). Next, an Amplatzer Vascular Plug (AGA Medical, Plymouth, MN) was used to occlude the left external iliac artery. The right hypogastric artery was coil embolized (embolization coils; Cook Medical, Bloomington, IN) and the endograft was then extended into the external iliac artery, requiring a self-expanding stent (Smart Stent; Cordis Corporation, Bridgewater, NJ) at the distal end to obtain a smooth transition in this very tortuous artery. The procedure was completed with a femorofemoral crossover bypass using an 8-mm Dacron graft.

The patient’s recovery was uneventful and had mild right buttock claudication for 6 weeks. Sexual function was preserved. A computed tomography scan showed complete exclusion of the aneurysms and patent reconstructions (Fig. 3).

DISCUSSION

Bilateral iliac aneurysms preventing an appropriate landing zone for an endograft represent a common condition and can be managed by several options.

1. The use of oversized iliac limbs up to 28 mm (Endurant; Medtronic, Santa Rosa, CA) or the distal deployment of aortic extensions allows landing on ectatic or aneurysmal common iliac arteries, obtaining sealing proximal to the hypogastric artery. This is not only limited by the available sizes but also by the concern of dilatation of the landing zone leading to endoleak.

2. Bilateral hypogastric embolization has been widely used and reported by some groups with very different results and safety. All of them agree in a variable but eventually acceptable incidence of permanent and limiting buttock claudication and impotence. Serious morbidity has also been described, such as bowel and skin necrosis.

3. A combined or hybrid approach for surgical revascularization of the hypogastric artery is an interesting option but increases the impact of the procedure on a potentially high-risk patient and can also be technically challenging.

4. Using an endograft to revascularize the hypogastric artery from the ipsilateral external iliac artery in a retrograde fashion has been described. There are some drawbacks related to this technique, mainly related to the acute angulation between the external iliac and hypogastric arteries. This makes the procedure difficult and exposes the device to an enormous stress, and there is limited and difficult access to the hypogastric artery in case a reintervention is needed.

5. The most recent development is the use of a branched device, allowing simultaneous ipsilateral revascularization of both the external and hypogastric arteries. This is probably a very good solution but increases the cost of treatment, requiring not only the device itself but also a separate covered stent to connect it to the hypogastric artery. Mid-term patency is acceptable, but availability at this point is limited. One possible
The advantage of this procedure over the one presented here is the use of a bifurcated graft instead of an aortouniiliac approach requiring a femorofemoral crossover bypass. However, over the years, multiple reports have demonstrated the safety and durability of this extra-anatomic reconstruction in this setting.17,18

The technique presented with this communication has been used by others to treat late iliac aneurysmal degeneration after open aortic aneurysm repair.19 It has also been described to preserve vascular flow to the pelvis during endografting for bilateral iliac aneurysms using different devices but a similar approach.20

Fig. 2. (A) Angiogram before the deployment of the Fluency stent graft, from the Zenith aortic endograft (E) to the hypogastric artery (H). (B) Angiogram after deployment of the Fluency stent, showing complete sealing at both ends.

Fig. 3. Volume rendering reconstructions of a postoperative computed tomography scan, showing complete sealing, patency of all reconstructions, and flow into the left hypogastric artery (H).
There are some obvious limitations to this technique, a small brachial artery size preventing access of a rather large sheath and potential diameter mismatch of available devices between different endografts, jeopardizing the long-term seal and patency. It is, however, a reasonable alternative to consider in the endovascular treatment of patients with bilateral common iliac aneurysms, allowing partial preservation of pelvic perfusion, limiting cost, and using commercially available devices.

REFERENCES

